• 帮助中心

  • ADADADADAD

    中国古代史资料,高考历史资料,历史复习资料

    高考中国古代史重点复习资料汇整2021[ 历史 ]

    历史 时间:2022-07-24 19:47:00 热度:1℃

    作者:文/会员上传 下载docx

    简介:

    复习是对以前学过的知识进行系统的再加工,并根据学习情况对学习进行适当的调整,为下一阶段的学习做好准备。下面是小编为大家整理的有关高考中国古代史重点复习资料汇整,希望对你们有帮助!高考中国古代史重点复习资料汇整一、远古时代元谋人 云南元谋 距

    以下为本文的正文内容,请查阅,本站为公益性网站,复制本文以及下载DOC文档全部免费。

    掌握用简单的一元一次不等式解决二次根式中字母的取值问题;一起看看初二数学公开课教案!欢迎查阅!

    初二数学公开课教案1

    一、教学目标

    1.了解二次根式的意义;

    2.掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

    3.掌握二次根式的性质和,并能灵活应用;

    4.通过二次根式的计算培养学生的逻辑思维能力;

    5.通过二次根式性质和的介绍渗透对称性、规律性的数学美.

    二、教学重点和难点

    重点:(1)二次根的意义;(2)二次根式中字母的取值范围.

    难点:确定二次根式中字母的取值范围.

    三、教学方法

    启发式、讲练结合.

    四、教学过程

    (一)复习提问

    1.什么叫平方根、算术平方根?

    2.说出下列各式的意义,并计算

    (二)引入新课

    新课:二次根式

    定义:式子叫做二次根式.

    对于请同学们讨论论应注意的问题,引导学生总结:

    (1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?

    若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.

    (2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次

    根式指的是某种式子的“外在形态”.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.

    例1当a为实数时,下列各式中哪些是二次根式?

    例2x是怎样的实数时,式子在实数范围有意义?

    解:略.

    说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义.

    例3当字母取何值时,下列各式为二次根式:

    (1)(2)(3)(4)

    分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式.

    解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式.

    (2)-3x≥0,x≤0,即x≤0时,是二次根式.

    (3),且x≠0,∴x>0,当x>0时,是二次根式.

    (4),即,故x-2≥0且x-2≠0,∴x>2.当x>2时,是二次根式.

    例4下列各式是二次根式,求式子中的字母所满足的条件:

    分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.

    解:(1)由2a+3≥0,得.

    (2)由,得3a-1>0,解得.

    (3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是,式子是二次根式.所以所求字母x的取值范围是全体实数.

    (4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.

    初二数学公开课教案2

    教学目标

    1.等腰三角形的概念. 2.等腰三角形的性质. 3.等腰三角形的概念及性质的应用.

    教学重点: 1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.

    教学难点:等腰三角形三线合一的性质的理解及其应用.

    教学过程

    Ⅰ.提出问题,创设情境

    在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?

    有的三角形是轴对称图形,有的三角形不是.

    问题:那什么样的三角形是轴对称图形?

    满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.

    我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.

    Ⅱ.导入新课: 要求学生通过自己的思考来做一个等腰三角形.

    作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.

    等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.

    思考:

    1.等腰三角形是轴对称图形吗?请找出它的对称轴.

    2.等腰三角形的两底角有什么关系?

    3.顶角的平分线所在的直线是等腰三角形的对称轴吗?

    4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

    结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.

    要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.

    沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.

    由此可以得到等腰三角形的性质:

    1.等腰三角形的两个底角相等(简写成“等边对等角”).

    2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).

    由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).

    如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为

    所以△BAD≌△CAD(SSS).

    所以∠B=∠C.

    ]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

    所以△BAD≌△CAD.

    所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.

    [例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

    求:△ABC各角的度数.

    分析:根据等边对等角的性质,我们可以得到

    ∠A=∠ABD,∠ABC=∠C=∠BDC,

    再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

    再由三角形内角和为180°,就可求出△ABC的三个内角.

    把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.

    解:因为AB=AC,BD=BC=AD,

    所以∠ABC=∠C=∠BDC.

    ∠A=∠ABD(等边对等角).

    设∠A=x,则 ∠BDC=∠A+∠ABD=2x,

    从而∠ABC=∠C=∠BDC=2x.

    于是在△ABC中,有

    ∠A+∠ABC+∠C=x+2x+2x=180°,

    解得x=36°. 在△ABC中,∠A=35°,∠ABC=∠C=72°.

    [师]下面我们通过练习来巩固这节课所学的知识.

    Ⅲ.随堂练习:1.课本P51练习 1、2、3. 2.阅读课本P49~P51,然后小结.

    Ⅳ.课时小结

    这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.

    我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.

    Ⅴ.作业: 课本P56习题12.3第1、2、3、4题.

    板书设计

    12.3.1.1 等腰三角形

    一、设计方案作出一个等腰三角形

    二、等腰三角形性质: 1.等边对等角 2.三线合一

    初二数学公开课教案3

    教学目标

    1、 理解并掌握等腰三角形的判定定理及推论

    2、 能利用其性质与判定证明线段或角的相等关系.

    教学重点: 等腰三角形的判定定理及推论的运用

    教学难点: 正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.

    教学过程:

    一、复习等腰三角形的性质

    二、新授:

    I提出问题,创设情境

    出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.

    学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.

    II引入新课

    1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB= AC吗?

    作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?

    2.引导学生根据图形,写出已知、求证.

    2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).

    强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.

    4.引导学生说出引例中地质专家的测量方法的根据.

    III例题与练习

    1.如图2

    其中△ABC是等腰三角形的是 [ ]

    2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).

    ②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).

    ③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.

    ④若已知 AD=4cm,则BC______cm.

    3.以问题形式引出推论l______.

    4.以问题形式引出推论2______.

    例: 如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.

    分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.

    练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?

    (2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?

    练习:P53练习1、2、3。

    IV课堂小结

    1.判定一个三角形是等腰三角形有几种方法?

    2.判定一个三角形是等边三角形有几种方法?

    3.等腰三角形的性质定理与判定定理有何关系?

    4.现在证明线段相等问题,一般应从几方面考虑?

    V布置作业:P56页习题12.3第5、6题


    高考中国古代史重点复习资料汇整2021.docx

    将本文的Word文档下载到电脑

    推荐度:

    下载
    ADADAD
    热门栏目