• 帮助中心

  • ADADADADAD

    物理必修二知识点,物理必修二知识点总结,高中物理必修二知识点

    高中物理必修二知识点总结[ 学业水平 ]

    学业水平 时间:2022-07-24 19:43:00 热度:1℃

    作者:文/会员上传 下载docx

    简介:

    物理知识来源于实践,特别是来源于观察和实验。要认真观察物理现象,分析物理现象产生的条件和原因。下面是小编整理的高中物理必修二知识点总结,欢迎大家阅读分享借鉴。更多物理相关内容推荐↓↓↓初中物理知识点大全初中物理知识点基本概念初中物理基础知识

    以下为本文的正文内容,请查阅,本站为公益性网站,复制本文以及下载DOC文档全部免费。

    三角函数是一类基本的、重要的函数,在数学、其他学科以及生产实践中都有广泛的应用,下面是小编整理的高中数学三角函数知识点,欢迎大家阅读分享借鉴。

    高中数学三角函数知识点

    更多函数相关内容推荐↓↓↓

    高中数学重点公式总结分享

    初中数学函数知识点

    高二数学必背公式归纳

    中考数学一次函数知识点

    函数的概念教学反思

    高中数学三角函数知识点

    锐角三角函数定义

    锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

    正弦(sin)等于对边比斜边;sinA=a/c

    余弦(cos)等于邻边比斜边;cosA=b/c

    正切(tan)等于对边比邻边;tanA=a/b

    余切(cot)等于邻边比对边;cotA=b/a

    正割(sec)等于斜边比邻边;secA=c/b

    余割(csc)等于斜边比对边。cscA=c/a

    互余角的三角函数间的关系

    sin(90°-α)=cosα,cos(90°-α)=sinα,

    tan(90°-α)=cotα,cot(90°-α)=tanα.

    平方关系:

    sin^2(α)+cos^2(α)=1

    tan^2(α)+1=sec^2(α)

    cot^2(α)+1=csc^2(α)

    积的关系:

    sinα=tanα?cosα

    cosα=cotα?sinα

    tanα=sinα?secα

    cotα=cosα?cscα

    secα=tanα?cscα

    cscα=secα?cotα

    倒数关系:

    tanα?cotα=1

    sinα?cscα=1

    cosα?secα=1

    两角和与差的三角函数:

    sin(A+B)=sinAcosB+cosAsinB

    sin(A-B)=sinAcosB-cosAsinB?

    cos(A+B)=cosAcosB-sinAsinB

    cos(A-B)=cosAcosB+sinAsinB

    tan(A+B)=(tanA+tanB)/(1-tanAtanB)

    tan(A-B)=(tanA-tanB)/(1+tanAtanB)

    cot(A+B)=(cotAcotB-1)/(cotB+cotA)

    cot(A-B)=(cotAcotB+1)/(cotB-cotA)

    三角和的三角函数:

    sin(α+β+γ)=sinα?cosβ?cosγ+cosα?sinβ?cosγ+cosα?cosβ?sinγ-sinα?sinβ?sinγ

    cos(α+β+γ)=cosα?cosβ?cosγ-cosα?sinβ?sinγ-sinα?cosβ?sinγ-sinα?sinβ?cosγ

    tan(α+β+γ)=(tanα+tanβ+tanγ-tanα?tanβ?tanγ)/(1-tanα?tanβ-tanβ?tanγ-tanγ?tanα)

    辅助角公式:

    Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

    sint=B/(A^2+B^2)^(1/2)

    cost=A/(A^2+B^2)^(1/2)

    tant=B/A

    Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

    倍角公式:

    sin(2α)=2sinα?cosα=2/(tanα+cotα)

    cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

    tan(2α)=2tanα/[1-tan^2(α)]

    三倍角公式:

    sin(3α)=3sinα-4sin^3(α)

    cos(3α)=4cos^3(α)-3cosα

    半角公式:

    sin(α/2)=±√((1-cosα)/2)

    cos(α/2)=±√((1+cosα)/2)

    tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

    降幂公式

    sin^2(α)=(1-cos(2α))/2=versin(2α)/2

    cos^2(α)=(1+cos(2α))/2=covers(2α)/2

    tan^2(α)=(1-cos(2α))/(1+cos(2α))

    万能公式:

    sinα=2tan(α/2)/[1+tan^2(α/2)]

    cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

    tanα=2tan(α/2)/[1-tan^2(α/2)]

    积化和差公式:

    sinα?cosβ=(1/2)[sin(α+β)+sin(α-β)]

    cosα?sinβ=(1/2)[sin(α+β)-sin(α-β)]

    cosα?cosβ=(1/2)[cos(α+β)+cos(α-β)]

    sinα?sinβ=-(1/2)[cos(α+β)-cos(α-β)]

    和差化积公式:

    sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

    sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

    cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

    cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

    推导公式:

    tanα+cotα=2/sin2α

    tanα-cotα=-2cot2α

    1+cos2α=2cos^2α

    1-cos2α=2sin^2α

    1+sinα=(sinα/2+cosα/2)^2

    其他:

    sinα+sin(α+2π/n)+sin(α+2πx2/n)+sin(α+2πx3/n)+……+sin[α+2πx(n-1)/n]=0

    cosα+cos(α+2π/n)+cos(α+2πx2/n)+cos(α+2πx3/n)+……+cos[α+2πx(n-1)/n]=0以及

    sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

    tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

    函数名正弦余弦正切余切正割余割

    在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有

    正弦函数sinθ=y/r

    余弦函数cosθ=x/r

    正切函数tanθ=y/x

    余切函数cotθ=x/y

    正割函数secθ=r/x

    余割函数cscθ=r/y

    正弦(sin):角α的对边比上斜边

    余弦(cos):角α的邻边比上斜边

    正切(tan):角α的`对边比上邻边

    余切(cot):角α的邻边比上对边

    正割(sec):角α的斜边比上邻边

    余割(csc):角α的斜边比上对边

    万能公式

    (1)(sinα)^2+(cosα)^2=1

    (2)1+(tanα)^2=(secα)^2

    (3)1+(cotα)^2=(cscα)^2

    证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可

    (4)对于任意非直角三角形,总有

    tanA+tanB+tanC=tanAtanBtanC

    证:

    A+B=π-C

    tan(A+B)=tan(π-C)

    (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

    整理可得

    tanA+tanB+tanC=tanAtanBtanC

    得证

    同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立

    由tanA+tanB+tanC=tanAtanBtanC可得出以下结论

    (5)cotAcotB+cotAcotC+cotBcotC=1

    (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

    (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

    (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

    万能公式为:

    设tan(A/2)=t

    sinA=2t/(1+t^2)(A≠2kπ+π,k∈Z)

    tanA=2t/(1-t^2)(A≠2kπ+π,k∈Z)

    cosA=(1-t^2)/(1+t^2)(A≠2kπ+π,且A≠kπ+(π/2)k∈Z)

    就是说sinA.tanA.cosA都可以用tan(A/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了.

    三角函数关系

    倒数关系

    tanα?cotα=1

    sinα?cscα=1

    cosα?secα=1

    商的关系

    sinα/cosα=tanα=secα/cscα

    cosα/sinα=cotα=cscαcα

    平方关系

    sin^2(α)+cos^2(α)=1

    1+tan^2(α)=sec^2(α)

    1+cot^2(α)=csc^2(α)

    同角三角函数关系六角形记忆法

    构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

    倒数关系

    对角线上两个函数互为倒数;

    商数关系

    六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。

    平方关系

    在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

    两角和差公式

    sin(α+β)=sinαcosβ+cosαsinβ

    sin(α-β)=sinαcosβ-cosαsinβ

    cos(α+β)=cosαcosβ-sinαsinβ

    cos(α-β)=cosαcosβ+sinαsinβ

    tan(α+β)=(tanα+tanβ)/(1-tanα?tanβ)

    tan(α-β)=(tanα-tanβ)/(1+tanα?tanβ)

    二倍角的正弦、余弦和正切公式

    sin2α=2sinαcosα

    cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

    tan2α=2tanα/(1-tan^2(α)


    高中物理必修二知识点总结.docx

    将本文的Word文档下载到电脑

    推荐度:

    下载
    ADADAD