• 帮助中心

  • ADADADADAD

    数学观察物体知识,六年级数学观察物体知识

    六年级数学观察物体知识点[ 复习总结 ]

    复习总结 时间:2022-07-29 04:38:00 热度:1℃

    作者:文/会员上传 下载docx

    简介:

    小学数学是通过教材,教小朋友们关于数的认识,四则运算,图形和长度的计算公式,单位转换一系列的知识,为初中和日常生活的计算打下良好的数学基础。下面小编给大家分享一些六年级数学观察物体知识,希望能够帮助大家,欢迎阅读!六年级观察物体知识一、搭积

    以下为本文的正文内容,请查阅,本站为公益性网站,复制本文以及下载DOC文档全部免费。

    有知识不等于有智慧,知识积存得再多,若没有智慧加以应用,知识就失去了价值。了解你自己在做什么事,知道热爱做什么样的事,知道能把什么事做成什么样,这就是智慧。下面小编给大家分享一些初二上学期数学知识点,希望能够帮助大家,欢迎阅读!

    初二上学期数学知识1

    二元一次方程组1、二元一次方程

    ①二元一次方程

    含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。

    ②二元一次方程的解

    适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解

    2、二元一次方程组

    ①含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

    ②二元一次方程组的解

    二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

    ③二元一次方程组的解法

    代入(消元)法

    加减(消元)法

    ④一次函数与二元一次方程(组)的关系:

    一次函数与二元一次方程的关系:

    直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解

    一次函数与二元一次方程组的关系:

    二元一次方程组的解可看作两个一次函数的图象的交点。

    当函数图象有交点时,说明相应的二元一次方程组有解;

    当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。

    初二上学期数学知识2

    一次函数1、函数

    一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

    2、自变量取值范围

    使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

    3、函数的三种表示法及其优缺点

    关系式(解析)法

    两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

    列表法

    把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

    图象法

    用图象表示函数关系的方法叫做图象法。

    4、由函数关系式画其图像的一般步骤

    列表:列表给出自变量与函数的一些对应值

    描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

    连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

    5、正比例函数和一次函数

    ①正比例函数和一次函数的概念

    一般地,若两个变量x,y间的关系可以表示成 (k,b为常数,k 0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

    特别地,当一次函数 中的b=0时(即 )(k为常数,k 0),称y是x的正比例函数。

    ②一次函数的图像:

    所有一次函数的图像都是一条直线

    ③一次函数、正比例函数图像的主要特征

    一次函数 的图像是经过点(0,b)的直线;

    正比例函数 的图像是经过原点(0,0)的直线。

    ④正比例函数的性质

    一般地,正比例函数 有下列性质:

    当k>0时,图像经过第一、三象限,y随x的增大而增大

    当k<0时,图像经过第二、四象限,y随x的增大而减小

    ⑤一次函数的性质

    一般地,一次函数 有下列性质:

    当k>0时,y随x的增大而增大

    当k<0时,y随x的增大而减小

    ⑥正比例函数和一次函数解析式的确定

    确定一个正比例函数,就是要确定正比例函数定义式 (k 0)中的常数k。

    确定一个一次函数,需要确定一次函数定义式 (k 0)中的常数k和b。解这类问题的一般方法是待定系数法.

    ⑦一次函数与一元一次方程的关系

    任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k≠0)的形式. 而一次函数解析式形式正是y=kx+b(k、b为常数,k≠0).当函数值为0时,即kx+b=0就与一元一次方程完全相同.

    结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k≠0)的形式.所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值.

    从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.

    初二上学期数学知识3

    对称轴

    一、知识框架:

    二、知识概念:

    1、基本概念:

    (1)轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

    (2)两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。

    (3)线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

    (4)等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

    (5)等边三角形:三条边都相等的三角形叫做等边三角形。

    2、基本性质:

    (1)对称的性质:

    ①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线②对称的图形都全等。

    (2)线段垂直平分线的性质:

    ①线段垂直平分线上的点与这条线段两个端点的距离相等。②与一条线段两个端点距离相等的点在这条线段的垂直平分线上。

    (3)关于坐标轴对称的点的坐标性质。

    (4)等腰三角形的性质:

    ①等腰三角形两腰相等。②等腰三角形两底角相等(等边对等角)。③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合④等腰三角形是轴对称图形,对称轴是三线合一(1条)。

    (5)等边三角形的性质

    ①等边三角形三边都相等。②等边三角形三个内角都相等,都等于60°。③等边三角形每条边上都存在三线合一④等边三角形是轴对称图形,对称轴是三线合一(3条)。

    3、基本判定:

    (1)等腰三角形的判定:

    ①有两条边相等的三角形是等腰三角形。

    ②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

    (2)等边三角形的判定:

    ①三条边都相等的三角形是等边三角形。

    ②三个角都相等的三角形是等边三角形。

    ③有一个角是60°的等腰三角形是等边三角形。

    4、基本方法:

    (1)做已知直线的垂线:(2)做已知线段的垂直平分线:(3)作对称轴:连接两个对应点,作所连线段的垂直平分线。(4)作已知图形关于某直线的对称图形。(5)在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短。

    初二上学期数学知识4

    位置与坐标1、确定位置

    在平面内,确定物体的位置一般需要两个数据

    2、平面直角坐标系及有关概念

    ①平面直角坐标系

    在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

    ②平面直角坐标系

    为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

    注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

    ③点的坐标的概念

    对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

    点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当 时,(a,b)和(b,a)是两个不同点的坐标。

    平面内点的与有序实数对是一一对应的。

    ④不同位置的点的坐标的特征

    a、各象限内点的坐标的特征

    点P(x,y)在第一象限→ x>0,y>0

    点P(x,y)在第二象限 → x<0,y>0

    点P(x,y)在第三象限 → x<0,y<0

    点P(x,y)在第四象限 → x>0,y<0

    b、坐标轴上的点的特征

    点P(x,y)在x轴上 → y=0,x为任意实数

    点P(x,y)在y轴上 → x=0,y为任意实数

    点P(x,y)既在x轴上,又在y轴上→ x,y同时为零,即点P坐标为(0,0)即原点

    c、两条坐标轴夹角平分线上点的坐标的特征

    点P(x,y)在第一、三象限夹角平分线(直线y=x)上 → x与y相等

    点P(x,y)在第二、四象限夹角平分线上 → x与y互为相反数

    d、和坐标轴平行的直线上点的坐标的特征

    位于平行于x轴的直线上的各点的纵坐标相同。

    位于平行于y轴的直线上的各点的横坐标相同。

    e、关于x轴、y轴或原点对称的点的坐标的特征

    点P与点p’关于x轴对称 横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)

    点P与点p’关于y轴对称 纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)

    点P与点p’关于原点对称 横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)

    f、点到坐标轴及原点的距离

    点P(x,y)到坐标轴及原点的距离:

    点P(x,y)到x轴的距离等于 ∣y∣

    点P(x,y)到y轴的距离等于 ∣x∣

    点P(x,y)到原点的距离等于 √x2+y2

    3、坐标变化与图形变化的规律

    初二上学期数学知识5

    实数 1、实数的概念及分类

    ①实数的分类

    ②无理数

    无限不循环小数叫做无理数。

    在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

    开方开不尽的数,如 √7 ,3 √2 等;

    有特定意义的数,如圆周率π,或化简后含有π的数,

    如π /?+8等;

    有特定结构的数,如0.1010010001…等;

    某些三角函数值,如sin600等

    2、实数的倒数、相反数和绝对值

    ①相反数

    实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

    ②绝对值

    在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

    ③倒数

    如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

    ④数轴

    规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

    解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

    ⑤估算

    3、平方根、算数平方根和立方根

    ①算术平方根

    一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。

    表示方法:记作“ ”,读作根号a。

    性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

    ②平方根

    一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。

    表示方法:正数a的平方根记做“ ”,读作“正、负根号a”。

    性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

    开平方求一个数a的平方根的运算,叫做开平方。注意 √a的双重非负性:√a≥0 ; a≥0

    ③立方根

    一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a 的立方根(或三次方根)。

    表示方法:记作 3 √a

    性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

    注意:- 3 √a=3 √-a,这说明三次根号内的负号可以移到根号外面。

    4、实数大小的比较

    ①实数比较大小

    正数大于零,负数小于零,正数大于一切负数;

    数轴上的两个点所表示的数,右边的总比左边的大;

    两个负数,绝对值大的反而小。

    ②实数大小比较的几种常用方法

    数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

    求差比较:设a、b是实数

    a-b>0?a>b ;

    a-b=0?a=b

    a-b<0?a

    求商比较法:设a、b是两正实数,

    绝对值比较法:设a、b是两负实数,则∣a∣>∣b∣?a

    平方法:设a、b是两负实数,则 a2>b2?a

    5、算术平方根有关计算(二次根式)

    ①含有二次根号“ √ ”;被开方数a必须是非负数。

    ②性质:

    ③运算结果若含有“ √ ”形式,必须满足

    被开方数的因数是整数,因式是整式

    被开方数中不含能开得尽方的因数或因式

    6、实数的运算

    ①六种运算:加、减、乘、除、乘方 、开方

    ②实数的运算顺序

    先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

    ③运算律

    加法交换律 a+b= b+a

    加法结合律 (a+b)+c= a+( b+c )

    乘法交换律 ab= ba

    乘法结合律 (ab)c = a( bc )

    乘法对加法的分配律 a( b+c )=ab+ac


    初二上学期数学知识点相关文章

    ★ 初二数学上册知识点总结

    ★ 初二上学期数学知识点汇总(2)

    ★ 初二数学上学期知识点归纳

    ★ 八年级数学上学期知识点总结

    ★ 八年级上学期数学知识点总结

    ★ 人教版八年级数学上册知识点总结

    ★ 人教版初二数学上学期知识点总结

    ★ 初二数学知识点归纳上册人教版

    ★ 初二上册数学知识点总结与学习方法

    ★ 初二数学上册知识点

    六年级数学观察物体知识点.docx

    将本文的Word文档下载到电脑

    推荐度:

    下载
    ADADAD
    热门栏目